
8/19/22, 7:25 AM Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity - PMC

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520125/ 1/43

Nat Rev Endocrinol. Author manuscript; available in PMC 2019 Jun 1.
Published in final edited form as:

Nat Rev Endocrinol. 2019 Jun; 15(6): 339–355.
doi: 10.1038/s41574-019-0170-1

PMCID: PMC6520125
NIHMSID: NIHMS1019691

PMID: 30814687

Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity

Gabriel M. Pagnotti,  Maya Styner,  Gunes Uzer,  Vihitaben S. Patel,  Laura E. Wright,  Kirsten K. Ness,

Theresa A. Guise,  Janet Rubin,  and Clinton T. Rubin

Abstract

Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with phar-
macological interventions that are associated with poor adherence and adverse effects.
Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predis-
posing the population to a range of musculoskeletal complications and metabolic disorders.
Pharmacological management of obesity has yet to deliver notable reductions in weight and debil-
itating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive
and non-pharmacological method of regulating both osteoporosis and obesity. The principal com-
ponents of exercise — mechanical signals — promote bone and muscle anabolism while limiting
formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be
achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage
selection of their common progenitors — mesenchymal stem cells. An inverse relationship be-
tween adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions
such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as
contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be
used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to
new strategies to treat chronic diseases such as osteoporosis and obesity.

The evolution of Homo	sapiens from hunters to farmers, and then from agrarian cultures to the
industrial era , drove profound adaptations to our skeletal phenotype, including a decline in
bone quantity and quality . In parallel, as food has become more accessible and lifestyles less
physically demanding, the composition of the human body has shifted towards increased body fat
and reduced lean tissue mass, which is partly a consequence of a vestigial survival strategy that
stockpiles calories when food is available . The post-Industrial Revolution era and the sedentary
lifestyle that it has promoted has fostered two major diseases — osteoporosis and obesity .
Basic, applied and translational sciences emphasize that these diseases can be managed by rein-
troducing physical activity into our lives . Exercise, at a minimum, provides additive bene�its to
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pharmacological interventions to improve bone quality and reduce fat mass, and is frequently rec-
ommended to those capable of strenuous activity and sustaining high-magnitude loading.
However, intense physical activity is often not achievable in ageing populations and for those with
underlying musculoskeletal or metabolic conditions for whom exercise is simply not possible or
could be dangerous. Alternative approaches that incorporate mechanical stimuli without the need
to run a marathon or compete on a football pitch are being studied for clinical application in these
less-mobile populations.

Osteoporosis, which is de�ined as decreased bone quantity and quality, has multiple aetiologies,
ranging from age-related conditions (postmenopausal and ageing physiology) to genetic causes
(for example, mutations that result in WNT1 de�iciency), endocrine or disease-speci�ic treatment
modi�iers (for example, glucocorti-costeroids and aromatase inhibitors) and unloading (bed rest
or paraplegia). Statistically, osteoporosis primarily affects postmenopausal women and elderly
men, with 30% of women and 20% of men >50 years old predicted to experience an osteoporo-
sis-related fracture in their lifetime . Age-driven shifts in hormone status , compounded by
reduced physical activity, disrupt balanced bone remodelling, leading to elevated bone resorption
and suppressed bone formation. The risk of fracture in the ageing population is further com-
pounded by muscle wasting, or sarcopenia, which contributes to muscle weakness and decreased
mobility, as well as an increase in instability that precipitates the risk of falls . Although pharma-
ceutical approaches for sarcopenia have yet to be approved for use, interventions targeting osteo-
porosis have been well studied and demonstrate bene�icial effects on fracture risk . However, ad-
verse effects  can accrue during long-term use of osteoporosis therapeutics , and a lack of pa-
tient adherence to the drug therapy can occur . In addition, poor patient adherence with stan-
dard osteoporotic recommendations  continues to be a barrier to effective treatment in our age-
ing populations.

Equally disconcerting, almost 40% of adults and nearly 20% of adolescents in the United States
have obesity, with a continuing upwards trend: in the past 50 years, the prevalence of obesity has
risen by 27% in adults and 47% among children , which has been promoted by sedentary life-
styles and poor nutrition. Obesity markedly increases susceptibility to a range of associated dis-
eases (for example, type 2 diabetes mellitus  and cardiovascular disease ), physical limitations
(such as immobility  and atypical gait ) and chronic in�lammation (for example, osteoarthritis

). Obesity not only increases the risk of many solid tumours  but also promotes cancer
metastases . Compounding these problems, accrual of adipose tissue within the bone marrow
space can lead to an in�lammatory state , which increases bone resorption, disrupts differentia-
tion of mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs)  and undermines
regenerative and immune responses . Decreasing adipose tissue mass or regulating the func-
tions of the adipocytes in the bone marrow might present a target for controlling both bone qual-
ity and in�lammation, which is of great interest for developing new therapeutic strategies .

Weight-bearing exercise is a cornerstone in the treatment and prevention of postmenopausal and
age-associated osteoporosis. The National Osteoporosis Foundation recommends skeletal loading
with both high-impact and low-impact weight-bearing exercises for at least 30 min per day, 5–7
days a week . Importantly, MSCs, the shared progenitor for bone and adipose cells, seem to be
key to the inverse control of cell output, interpreting mechanical signals as stimulatory for bone
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and inhibitory for adipose . Furthermore, muscle strengthening exercises are now recom-
mended as complimentary to weight-bearing exercises to improve posture, reduce fall risk and
promote musculoskeletal anabolism . The dynamic ground-reaction forces generated during exer-
cise transduce a range of signals across the skeleton and musculature, subjecting cells, tissues and
organs to mechanical strain (deformation) and acceleration. Key bene�icial outcomes of exercise
include increased lean muscle mass, increased bone mineralization and turnover rate and de-
creased systemic in�lammation.

A central tenet of this Review is that key regulatory signals are generated during exercise and that
these factors are �irst and foremost mechanical in nature. Thus, a goal of this Review is to discuss
how these ubiquious signals arising from activity are �irst perceived by the cell population and
then how the cells respond to them, with particular emphasis on the musculoskeletal and adipose
systems. In addition, how metabolic and genetic disorders, as well as ageing, can disrupt this
process is addressed. Finally, we consider how surrogates for exercise might serve to treat these
conditions.

Mechanical influences on bone

Bone adaptation to physiological extremes.

Bone mass and architecture are placed at risk by disuse  but can respond to exercise with in-
creased mass and strength, leading to the ‘use it or lose it’ tenet of bone adaptation that is often
referred to as Wolff ‘s law . Retrospective studies illustrate the response of bone to physical ex-
tremes. Astronauts enduring microgravity lose as much as 2% of their hip BMD each month ,
whereas professional tennis players have up to 35% more bone hypertrophy in the serving arm
than in the arm that simply tosses the ball into the air . Furthermore, several site-speci�ic bene-
�its correlate with the specialized tasks of elite sportspeople trained over extended periods ,
where enhancement of bone morphology is greater in athletes challenged with intense impact
training (for example, football and gymnastics) than in those engaged in ‘smoother’ sports such as
cycling or swimming . What is also clear is that commitment to exercise early in life will maximize
potential gains, with strong correlations between physical activity and bone strength being evident
from childhood to early adulthood .

Response to new exercise regimens.

The results of several prospective trials indicate that new loading challenges can induce system-
level and site-speci�ic accretions of bone mass. Intense exercise in young army recruits stimulated
increases in BMD , and a 10-month, high-impact strength-building regimen in children signi�i-
cantly (1.9% versus 3.8%, P	= 0.002) increased femoral neck BMD . Despite the apparent an-
abolic nature of the mechanical signal, moderate exercise regimens generally result in modest (if
any) increases in bone mass; for example, a 1-year high-resistance strength-training study in
young women (mean age of 23.8 ± 5.0 years) signi�icantly increased muscle strength (14%, P =
0.001) but failed to in�luence bone mass . By contrast, high-intensity resistance plus impact train-
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ing improved both BMD and physical function in postmenopausal women with osteoporosis . The
inherent complexity of exercise-generated mechanical challenges for skeletal tissues  indicates
that some components of the load-bearing regimen might be more in�luential than others .

Mechanisms.

The ability of mechanical signals to increase musculoskeletal mass and quality is multifactorial, as
it involves simultaneously repressing pathways involved in the formation of adipose tissue and the
resorption of bone  (FIG. 1). Exercise exerts a range of forces across the appendicular and ax-
ial skeleton ; therefore, the musculoskeletal construct acts as a conduit to transduce both peaks
of ground-reaction forces and the spectral content of muscle contraction, bombarding the bone
tissue with both high-frequency and low-frequency mechanical signals. Transmitted through tis-
sues to the cellular level, mechanical responses are mediated through cytoskeletal proteins and
transmembrane-bound integrins that link the extracellular environment with the genetic machin-
ery encased within the nucleus . Propagation of mechanical signals along the WNT–β-catenin
pathway enhances osteogenic  (RUNX2, encoding Runt-related transcription factor 2) gene ex-
pression and chondrogenic (SOX9) growth while arresting adipogenesis . By increasing both
muscle and bone mass and strength, exercise succeeds in reducing the incidence of bone fracture
(reduction in falls and improvement of fracture strength) , achieved to a degree by upregulating
the expression of osteogenic, chondrogenic or myogenic  growth factors while pathways con-
ducive to PPARγ-driven adipogenesis are downregulated .
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Fig. 1 |

Exercise	and	mechanical	signals	are	anabolic	to	skeletal	tissue	and	muscle	and	slow	excessive	bone

resorption,	counteracting	the	negative	effects	of	a	high-fat	diet	and	sedentary	lifestyle	on	bone	and	fat.

Mesenchymal stem cell lineage selection as a function of mechanical signals drives osteogenic differentiation.

Here, exercise is directly responsible for augmenting bone and muscle mass while suppressing the accumulation
of fat. By contrast, sedentary lifestyles (the absence of mechanical stimuli, often accompanied by poor diet) in-
crease adipogenic programmes, resulting in increased marrow adiposity that can obstruct the persistence of

bone-remodelling cells. In the absence of mechanical load, osteoclast-mediated resorption is accelerated, in part,
by the secretion of in�lammatory adipokines released into the marrow, which results in the resorption of abnor-
mal levels of bone that are not reciprocated by bone formation, as is the case in normal bone remodelling.

Chronic destruction of bone matrix releases transforming growth factor-β (TGFβ), an in�lammatory cytokine that
leads to an impairment in the calcium gradient across muscle �ibres. Therefore, mechanical signals are critical in
regulating the dynamic between bone, muscle and fat. Depriving the body of mechanical stimuli in combination

with a high-fat diet perpetuates extensive bone loss, muscle weakness and fatty-tissue accumulation around vital
organs, which are tissue phenotypes that are conducive to the advancement of osteoporosis, impairments in glu-
cose metabolism and chronic in�lammation. NOX4, NADPH oxidase 4; RANKL, receptor activator of nuclear fac-

tor-κB ligand; ROS, reactive oxygen species; RUNX2, Runt-related transcription factor 2.

Whereas exercise delivers large quantities of mechanical information to the musculoskeletal sys-
tem, absence of this regulatory information as a consequence of disuse (such as during chronic
bed rest, exposure to microgravity, immobilization due to a cast or reduced physical activity)
results in conditions in which muscles, tendons and ligaments undergo catabolism and bone is
rapidly resorbed . Concurrently, studies show that extended bed rest drives increased mar-
row adipogenesis , which exacerbates the consequences of inactivity. For example, disuse will in-

71,72

73–76

77

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520125/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520125/figure/F1/


8/19/22, 7:25 AM Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity - PMC

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520125/ 6/43

crease the expression of PPARγ in MSCs and receptor activator of nuclear factor-κB ligand
(RANKL) in bone marrow, which promotes osteoclast-mediated bone resorption, yet both are
rapidly suppressed via introduction of mechanical stimuli .

Benefits of exercise in patients.

As outlined, the musculoskeletal system of healthy individuals is highly sensitive to mechanical sig-
nals. The mechanosensitivity of bone and muscle also suggests that patients with osteoporosis
might bene�it from incorporating exercise into a treatment regimen; however, the degree of the
regenerative effects of exercise might be limited by cell senescence, radiation damage and the ef-
fects of ageing (where stem and progenitor cells that have undergone apoptosis are already re-
moved from the potential pool of replacement cells) . Indeed, activities such as strength train-
ing are recognized as critical to achieving and maintaining a robust musculoskeletal system and to
reducing the risk of fracture . These activities have the added bene�its of suppressing adiposity,
the onset of obesity and the development of obesity-induced diabetes mellitus .

Postmenopausal women  and men with low testosterone levels , who have an increased risk of
fracture  and elevated levels of visceral adiposity, are encouraged to incorporate exercise into
their daily regimen to improve bone strength  and muscle mass . In children and adolescents
with chronic diseases, such as cancer  or type 1 diabetes mellitus , concomitant low bone den-
sity and suboptimal muscle mass and/or function are prevalent and persist into adulthood .
The addition of exercise, when tolerated, is key to conditioning in children with chronic diseases.
Exercise is also recommended for individuals with secondary osteoporosis as a result of cancer
(such as breast cancer) or as an adverse effect of certain treatments (such as aromatase in-
hibitors); however, the effects of the disease or the treatment can prevent these individuals from
participating in enough exercise to see bene�its and might actually cause the fracture it is intended
to prevent . This effect is particularly evident in patients who are too frail to undertake exercise
with suf�icient impact to improve bone end points; the frail state thus aggravates bone loss.
Furthermore, studies have shown that variations in osteocyte sensitivity and their lacunar mor-
phology persist with ageing . However, in vitro studies performed on cells collected from the
bones of ageing women (between the ages of 53 and 80 years)  have shown that anabolic re-
sponses (for example, production of bone matrix and prostaglandin E ) can be upregulated if the
signals are dynamic (that is, a time-varying, as opposed to static, or constant, signal) in nature .

Age influences the response to exercise.

Indeed, ageing might affect skeletal sensitivity to mechanical information. It is clear that younger
people more rapidly accrue bone in response to exercise than do older people , an observation
supported by animal studies . Ageing could also affect the ability of loading to deform bone
and results in a reduction in the number of available stem cells in older mice . Other factors that
are associated with ageing, such as a change in osteocyte morphology , might also contribute to
reduced load sensation. A great deal of exciting new information regarding the nature of tissue se-
nility suggests fundamentally new ways to think about ageing. It appears that within many tissues,
including bone, joint and muscle, some cells become ‘senescent’ and secrete cytokines that lead to
disruption of normal physiology . In the case of bone, senescent osteoblasts secrete a pro-in-
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�lammatory panel of factors that lead to resorption and decreased repair . Indeed, senolytic
compounds (such as navitoclax and quercetin) and targeted destruction of senescent cells have
demonstrated promise in overcoming apoptotic programmes  and preventing bone  and
muscle  loss . It will be fascinating to determine if exercise can delay the appearance of these
ageing-associated cells or modify their secretory pro�iles.

Ageing, exercise and muscle phenotype

Muscle in ageing.

Fracture risk is coupled to muscle health; thus, in order to address the effect of mechanical input
on bone, one should also consider how exercise in�luences muscle mass and function .
Age , disease, cell senescence , reduced physical activity  and diminished synthesis of
sex steroids (androgens and oestrogens) contribute to reduced muscle cross-sectional area and
mass , alterations in which types of muscle �ibre are present, lipid in�iltration of muscle, de-
creased protein synthesis and decreased muscle-speci�ic force, which collectively lead to sarcope-
nia . The de�inition of sarcopenia, which might seem obvious to clinicians, is still controver-
sial in clinical studies  but can be diagnosed using dual-energy X-ray absorptiometry (DXA) to
measure skeletal mass and predict disease progression as well as all-cause mortality. Decline in
muscle function is also hard to precisely diagnose. Measurable muscle decline begins at approxi-
mately 30 years of age, with one report estimating sarcopenia to affect almost 50% of the US pop-
ulation >60 years old  and other reports suggesting numbers below 20% . Men and women
are equally predisposed to the development of age-related sarcopenia, but muscle decline begins
earlier in women than in men  and might contribute to fall risk, ultimately increasing fracture
risk. A consensus de�inition, as well as more studies, will be necessary to con�irm the degree to
which sarcopenia affects the health of the ageing population.

Muscle–bone crosstalk.

Crosstalk between bone and skeletal muscle is mediated by mechanical signal transduction and
soluble factors . Skeletal muscle strength is dependent on protein integrity, which is regulated
by calcium, speci�ically ryanodine receptors (RyRs; intracellular calcium channels). These recep-
tors regulate  potentials maintained across the sarcoplasmic reticulum of muscle �ibres, thereby
orchestrating contractile forces. Maladaptive post-translational modi�ications to the RyR1 channel,
including oxidation or nitrosylation, lead to the dissociation of its stabilizing subunit calstabin 1.
As a result of this lack of stabilization, pathological leaks of Ca  occur, which contribute to muscle
weakness in ageing, chronic muscle fatigue, heart disease and muscular dystrophy .

Accelerated bone destruction as a consequence of bone metastases  or other high-turnover
bone diseases, such as Camurati–Engelmann disease , releases transforming growth factor-β
(TGFβ) stored within the mineralized bone matrix  into the circulation. In mice and humans, this
bone-derived TGFβ upregulates NADPH oxidase 4 (NOX4)-mediated production of reactive oxy-
gen species (ROS), which leads to instability of the RyR1–calstabin 1 complex, leakage of Ca  and
muscle weakness . Bisphosphonate inhibitors of osteoclastic bone resorption reduce circulating
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levels of TGFβ  and prevent muscle weakness in mice with osteolytic breast cancer bone metas-
tases, which suggests that pathological bone remodelling is involved in muscle weakness in can-
cer-induced osteolysis as well as other states of bone loss . As physical activity decreases in
those with osteoporosis , other bone maladies or obesity , MSC fate selection is biased to-
wards adipocytes in lieu of bone , further degrading musculoskeletal integrity and strength. This
process represents a feed-forward cycle in which bone loss promotes muscle weakness, resulting
in further reductions in bone and increases in adipose tissue.

Effects of exercise on muscle.

The management of sarcopenia includes improved nutrition, protein and/or pharmacological sup-
plementation and physical training. Use of either synthetic or endogenous growth hormone has
had mixed ef�icacy as unexpected biochemical alterations have led to adverse cardiovascular and
endocrine function . These poor results have meant that the pharmaceutical industry has
been unwilling to address common age-associated sarcopenia. Incorporating various forms of ex-
ercise  and physical activity into our daily lives improves muscle function, offsets age-related
changes to muscle morphology  and improves insulin resistance . Physical activity in-
creases the oxidative capacity of muscle and encourages anabolic growth and function through
the mammalian target of rapamycin complex 1 (mTORC1) , PI3K–AKT and NF-κB
pathways . At the molecular level, exercise is a potent inhibitor of the FOXO  family of muscle-
controlled transcription factors that are tightly linked to muscle atrophy  (such as FOXO3) and
attenuation of bone formation through WNT suppression . Inhibition of FOXO3 is mediated by
resistance exercise through activation of the PI3K–AKT–mTOR pathway . Therefore, by de-
fault, the introduction of mechanical stimuli through exercise facilitates pathways conducive to the
maintenance and growth of bone.

Force production at the level of the skeletal myocyte depends on the proper handling of Ca  be-
tween the sarcoplasmic reticulum and the cytosol. During excitation contraction coupling, sar-
coplasmic-reticulum-sequestered Ca  is released through activated RyR1 into the cytoplasm,
which permits Ca -dependent actin–myosin cross bridging. Disruption of the RyR1 complex
caused by oxidative stress has been implicated in muscle weakness  due to ageing, congestive
heart failure, muscular dystrophy and cancer-associated osteolysis . In the latter setting, the
muscle weakness is mediated by release of bone-derived TGFβ and has implications for any state
of increased bone resorption, including ageing, sex steroid deprivation, cancer and/or drug-treat-
ment-induced osteoporosis. Thus, the prevention of bone loss through exercise intervention might
have positive indirect downstream effects on muscle. Maladaptation of RyR1 has been shown in
other disorders of muscle weakness and bone loss. For instance, in humans, muscle atrophy as a
consequence of 60 days of bed rest resulted in dysfunctional Ca  homeostasis with increased S-
nitrosylation of the RyR1 and malfunction of the SERCA1 pump . This maladaptive nitrosylation
of RyR1 was rescued with a combination of resistive exercise and low-intensity vibration (an exer-
cise surrogate) but not with resistive exercise alone . In addition to reducing bed rest-induced
RyR1 S-nitrosylation, low-magnitude mechanical signals increased protein expression of RyR1
(REF. ) and nuclear factor erythroid 2-related factor 2 (NRF2) , a critical transcriptional regu-
lator of antioxidant protein expression, which protects against oxidative damage. These low-inten-
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sity signals also served to protect the actual number of satellite cells (precursors to differentiated
skeletal muscle cells) available within the muscle when challenged with endocrinopathy  or obe-
sity .

Osteocalcin.

Bone-derived osteocalcin has also been demonstrated to regulate skeletal muscle function, mass
and exercise capacity in mice . At the molecular level, osteocalcin signalling in skeletal muscle
promotes the uptake and subsequent catabolism of glucose and free fatty acids , effects that are
similar to those of IL-6 (REF. ). This metabolic response and optimization of energy utilization in
myo�ibrils might contribute to gains in muscle performance following the delivery of mechanical
forces to bone. Interestingly, muscle-derived IL-6 increases the production of bioactive
osteocalcin  and, similarly, these same preclinical studies demonstrated that osteocalcin stimu-
lated the expression and secretion of IL-6 from skeletal muscle. These data support a feedforward
mechanism of adaptation to exercise mediated by osteoblast expression of osteocalcin and skele-
tal muscle expression of IL-6 during mechanical loading of the musculoskeletal system.

Types of exercise regimen.

Exercise modalities can halt or reverse muscle loss. For example, resistance and endurance train-
ing are both effective countermeasures to slow muscle loss  and promote gain in mass and neu-
ronal activation . In addition, resistance training induces muscle hypertrophy , which in-
creases muscle mass and strength through morphological changes to muscle �ibres . Although
resistance training ensures dramatic effects, individuals with sarcopenia and osteoporosis cannot
endure (or risk) the higher magnitudes of resistance training . Alternatively, adherence to exer-
cise regimens might be more achievable through endurance training in ageing adult populations,
particularly in those with obesity, which would inhibit weight gain and maintain healthier muscle
by stimulating satellite cell proliferation and increasing metabolic muscle output . Even the low-
intensity nature of yoga, which is known to enhance musculature and improve balance , has
been introduced as a means to treat the effects of muscle wasting in patients with cancer-associ-
ated cachexia, a strategy that is also encouraged in those with sarcopenia who have restricted mo-
bility .

Muscle and bone outcomes.

The hypertrophy of muscle mass and bone mass are positively correlated to each other in re-
sponse to mechanical stimuli  as exempli�ied by exercise-induced increases in satellite cells, in-
creased �ibre size and muscle hypertrophy. The dependency of bone outcomes on muscle is also
apparent in embryonic paralysis  and genetic muscle dysfunction , as well as in humans with
muscular dystrophy who develop skeletal abnormalities. Translating this observation to humans,
patients adversely affected by myopathy-inducing pharmacological treatments have bene�ited
from incorporating exercise into the treatment strategy. Exercise surrogates, such as low-intensity
vibration, have been hypothesized to play a similar role; low-intensity vibration increases the sat-
ellite cell pool , limits fatty in�iltration of skeletal muscle , downregulates pro-in�lammatory
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gene expression  and upregulates the expression of anti-in�lammatory molecules. Therefore,
through mechanical intervention, whether strenuous or as general maintenance of adequate mus-
cle health, bone outcomes are improved.

Factors that promote marrow fat

Marrow adipocytes.

In excess, adipose tissue can contribute to a host of metabolic conditions — the most extreme of
these being obesity. However, the degree of adipose accrual does not need to reach a BMI ≥35
kg/m  to be harmful: fat is found in bone marrow, muscle, joints and liver and has a myriad of
functional consequences when present in excess. In the marrow microenvironment, which is a
constrained space consisting of MSCs and HSCs, the impact of excess adipose tissue probably de-
pends on age, aetiology and in�lammatory status . Ageing, postmenopausal status, undernutri-
tion, some pharmacological therapies and an absence of physical activity can all drive marrow adi-
posity . Marrow adipose tissue (MAT), which �irst develops in the prenatal skeleton, is estimated
to occupy 70% of the marrow space by young adulthood . Marrow adipocytes secrete a multi-
tude of adipokines (such as adiponectin and IL-6), some of which induce in�lammation  and os-
teoclastogenesis , which can disrupt haematopoiesis  and aggravate bone loss . For in-
stance, IL-6 induces the expression of RANKL on osteoclasts and their precursors, which in-
creases recruitment of haematopoietic macrophage precursors into the osteoclast lineage and in-
creases bone resorption . Adiponectin, another adipokine highly expressed by marrow
adipocytes , stimulates RANKL expression on mature osteoclasts and is associated with low
BMD in elderly men and women . With these �indings in mind, slowing the expansion of adi-
pose tissue throughout the marrow space might protect and preserve the MSC and HSC niche,
permitting progenitors to retain their regenerative (MSC) and immune (HSC) functions and coun-
teracting osteoporosis and in�lammatory disease.

Exercise suppresses the formation of MAT, even when MAT is stimulated by an anti-diabetic thia-
zolidinedione drug or a high-fat dietary intervention . As such, exercise might help preserve the
morphology and phenotype of the marrow microniche where osteoprogenitors, as well as HSCs,
reside. For example, in contrast to their non-exercised counterparts, 6 weeks of daily running in-
creased bone quantity, improved bone quality and suppressed MAT accumulation in mice fed ei-
ther regular or high-fat diets (HFDs) . Furthermore, treatment with a PPARγ agonist (rosiglita-
zone) increases stem cell adipogenesis in rodents  and humans . These outcomes are sup-
pressed by dynamic (time-varying) mechanical signals in vitro . In vivo, treadmill running in
rosiglitazone-treated mice suppressed an adipogenic shift in the marrow phenotype .

Obesity.

Obesity predisposes the body to a wide-range of perturbations and morphological changes, such
as adipocyte hypertrophy from excess lipid storage , including within the marrow space.
Multiple studies have demonstrated that MAT increases as total fat mass increases in mouse mod-
els of obesity . For instance, 6 weeks of a mild HFD (45% kcal from fat) led to a 2.6-fold

168

2

37

169

170

171

172 173 174

175

176

177,178

39

39

179,180 181

67

180

182

39,183–187



8/19/22, 7:25 AM Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity - PMC

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520125/ 11/43

increase in MAT in young female mice . Six weeks of higher-fat-supplemented chow (60% kcal
from fat) led to a fourfold increase in MAT in young male C57BL/6 mice . After 12 weeks of a
similar diet, which was fed from weaning, MAT increased more than �ivefold . In addition, 3
months of a diet consistng of 45% kcal from fat increased MAT and adipocyte hypertrophy  (
FIG. 2).

Fig. 2 |

Exercise	suppresses	expansion	of	marrow	adipocytes	and	strengthens	bone	in	obese	mice.

a | Obese (diet-induced obesity (DIO)) and lean (low-fat diet (LFD)) mice were allocated to running exercise

(DIO-E and LFD-E, respectively) or sedentary groups for 6 weeks (n = 6 per group). The images are a visualization
of femoral marrow adipose tissue (MAT) in mice measured by MRI with advanced image analysis. Each image
represents six images superimposed on each other. The heat map demonstrates the relative lipid quantity. b |

Schematic representation of marrow adipocytes in the setting of obesity with or without exercise. DIO increases
adipocyte size and number and expression of the lipid droplet marker PLIN5, resulting in expansion of cortical
endosteal and periosteal bone surfaces. By contrast, exercise increases bone quantity and quality relying on β-oxi-
dation of lipids in the marrow, as supported by a reduced number of adipocytes in the marrow and their cross-

sectional area and increased expression of oxidation and lipolysis markers (for example, PLIN3). Part a repro-
duced with permission from REF. ,Wiley-VCH.
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Six months of a diet consisting of 45% kcal from fat in C57BL/6 mice led to a 20–25% increase in
total numbers of cells in the bone marrow without affecting the fraction of different cell types;
thus, factors secreted by elevated amounts of MAT, such as leptin, increased haematopoietic and
lymphopoietic populations, which indicates that an HFD heavily dysregulates immunity .
Similarly, 12 weeks of a diet of 60% kcal from fat led to bone marrow hyperplasia (28% increase
in nucleated cells) in Wistar rats . Conversely, 18 weeks of a diet of 45% kcal from fat led to de-
creased HSCs and progenitor cells in the marrow, owing partly to both reduced proliferation and
increased differentiation of short-term HSCs and progenitor cells into multipotent progenitor
cells . By contrast, 16 weeks of an HFD led to increased long-term HSC populations in the mar-
row .

Most studies on obesity suggest that the condition is associated with impaired lymphopoiesis and
increased myelopoiesis. In rats, obesity led to an increased number of osteoblasts, segmented
neutrophils and eosinophils, whereas no notable difference was observed in the number of mar-
row-bound lymphocytes . In mice, the effects of obesity on immunity in the marrow have been
associated with reduced numbers of B cells and T cells and an increased number of myeloid
cells . By contrast, another mouse study demonstrated a 10–18% increase in lymphocyte
progenitors within the marrow during obesity, resulting in an enrichment of total lymphocyte
counts in the circulation of 70–125% . Furthermore, HSCs harvested from a marrow environ-
ment that was high in fat have an elevated capacity to produce macrophages .

Obesity in humans has been linked with elevated systemic in�lammation, much of which is directly
associated with macrophage in�iltration of extra-marrow adipose depots and increased numbers
of immune cells in the circulation . Interestingly, a positive correlation between BMI and
blood leukocyte count is found in individuals who are insulin resistant . Increased in�iltration of
immune cells into the visceral cavity and increased secretion of pro-in�lammatory cytokines per-
petuate in the obese phenotype . In mice, just 2 weeks of an HFD facilitates rapid weight
gain and diffuse visceral adiposity . White adipose tissue-mediated secretion of pro-in�lamma-
tory cytokines (adipokines)  and ROS (which drive macrophage and cytotoxic T cell production)
further promotes the state of chronic in�lammation  through release of matrix metallopro-
teinases (MMPs), tumour necrosis factor (TNF) and IL-6, among others. In humans, these factors
predispose the individual to developing insulin resistance  and glucose intolerance, conditions
that can lead to the onset of type 2 diabetes mellitus  and ultimately contribute to de�icits in cor-
tical bone density, trabecular microarchitecture and bone size . In�lammation and increased lev-
els of pro-in�lammatory cytokines, such as TNF, IL-1, IL-6 and IL-17, are associated with increased
bone loss . Pro-in�lammatory cytokines promote bone loss by increasing the expression of
macrophage colony-stimulating factor and RANKL by osteoblasts and �ibroblasts in the
marrow . Inhibiting the function of IL-1 or TNF, which can be secreted by adipocytes, prevented
bone loss in ovariectomized mice . In addition, multiple animal studies have shown increased
adipogenesis resulting from a HFD that led to an obese phenotype exhibited, in parallel, with sup-
pression of osteoblastogenesis . Translated to humans, these �indings demonstrate that
the damage associated with poor diet and obesity to bone and immunity are exacerbated by in-
creased in�lammation. Whether the rise in marrow adiposity as a consequence of HFDs contrib-
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utes to elevated in�lammation and dysregulated immunity or outcompetes osteoprogenitors for
marrow space, the resulting phenotype is conducive to increased pathological outcomes across a
range of systems.

Transducing a mechanical signal

Mechanical forces.

The array of mechanical forces experienced by all cells in bone, including MSCs and HSCs in the
marrow, is complex and multifactorial. Spatially, MSCs reside in bone marrow niches near the
bone surface and are exposed to matrix deformations , accelerations , muscle activ-
ity , �luid �low  and changes in intramedullary pressure , each of which cannot
be disentangled from the other . During locomotion, the bone matrix encounters strains in the
range of 2,000–3,500 microstrain (µε) . Owing to bone’s porous structure, local strain concen-
trations create pressure gradients and induce local �luid �low in and out of the bone matrix, simi-
lar to squishing a kitchen sponge. In vivo, even fairly low strains (400 µε) that might correspond
to seemingly gentle activities such as walking can produce �luid �low within the lacunar–canalicu-
lar network that is as high as 5 Pa (REF. ). In this way, MSCs that reside on or in proximity to
bone surfaces are also subjected to exercise-derived �luid �low. Within the marrow, small motions
at the interface between marrow and bone, such as those induced by exercise, will generate a �luid
shear that is independent of strain-derived �luid �low . Dynamic shear forces , such as pul-
satile �luid �low, can promote osteogenesis in rat calvarial cells and represent a key physical factor
in mechanotransduction.

During moderate running, tibial accelerations approach 2.0 g (where 1.0 g (or 9.8 m/s ) is Earth’s
gravitational pull), and the ground-reaction force of Olympic sprinters can exceed 3.0 g (that is,
three times their body weight) . In silico studies reveal that when using vibration to introduce
subtle mechanical oscillations (with a range of 0.1–0.5g), marrow-�illed trabecular
compartments  generate �luid shear stresses up to 2.0 Pa (REFS ), which is a mechani-
cal signal capable of in�luencing MSC function . The viscosity of red marrow was found to be
much higher (400 cP) than that of fatty marrow (40 cP) , which implies that �luid shear at the
bone marrow interface, and within the marrow itself, can change dramatically because of
marrow’s �luid dynamic properties . Red and fatty bone marrow can replace one another ,
and conditions such as ageing and osteoporosis result in an increase in adipose tissue volume in
the marrow while depleting the bone .

Pathways.

Osteoblasts have more cytoskeletal constructs and interconnections that link to the nucleus than
adipocytes; culturing human MSCs and osteoblasts on hard surfaces improves osteogenesis and is
associated with the development of a complex cytoskeleton . The application of physical
forces in vitro, which dynamically increases cytoskeletal actin structure , inhibits adipogenesis,
which preserves the multipotentiality of MSCs and their ability to enter the osteoblast
lineage . In vitro application of mechanical strain to MSCs is associated with recruitment of
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signalling complexes to focal adhesions, where AKT activation inhibits the effect of GSK3β target-
ing β-catenin for destruction, thereby increasing β-catenin signalling . AKT activation also leads
to increased levels of GTP-bound active RhoA and production of highly connected cytoplasmic
actin connections  that are involved in molecule translocation as well as transmitting forces di-
rectly into the nucleus  (FIG. 3). Thus, the dynamic remodelling of cytoskeletal elements in re-
sponse to the local bone marrow mechanical environment orchestrates the delivery of this me-
chanical information from the plasma membrane and/or other sites, such as the nucleus itself, in
order to regulate gene expression programmes in cells .

Fig. 3 |

Mechanotransductive	responses	of	mesenchymal	stem	cells	to	dynamic	mechanical	stimuli	are	achieved
through	the	internal	stiffening	of	the	cell	via	cytoplasmic-bound	actin	proteins.

a | The absence of mechanical forces prevents the polymerization of actin �ibres, preventing the dephosphoryla-
tion of β-catenin, which remains bound to GSK3β. As such, β-catenin does not translocate to the nucleus, resulting
in the expression of PPARγ-driven adipogenic pathways. b | By contrast, mechanical stimuli recruit actin �ibres to

the interface of the cell membrane and the substrate surface. These focal adhesions become stronger and denser
in response to dynamic mechanical stimuli, permitting the movement of β-catenin into the nucleus and an ensu-
ing osteogenic response. FHOD1, FH1/FH2 domain-containing protein 1; LINC, linker of nucleoskeleton and

cytoskeleton.

Perhaps the most widely recognized mechanoreceptive pathways are those that sense mechanical
information at the plasma membrane and transmit it to the nucleus (termed outside-in signalling).
Focal adhesions, which are maintained by cytoskeletal tension  and extracellular force, act as
signalling relays for extracellular (and intracellular) cues . In response to mechanical challenges,
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structural proteins, such as vinculin, paxillin and talin, are recruited into focal adhesions ,
whereas others (such as zyxin) leave focal adhesions and localize themselves onto actin �ibres to
recruit actin nucleation and the branching factor actin-related protein 2 (ARP2)–ARP3
complex . Structural changes in focal adhesions are accompanied by the recruitment of sig-
nalling molecules, including focal adhesion kinase (FAK) and SRC kinases as well as AKT, a known
activator of Rho GTPases , such as RhoA, RAS and CDC42 (REF. ). RhoA activity increases
the cell tension through its effector protein ROCK, which activates myosin light-chain kinases, lead-
ing to activation of the dimerized motor protein myosin II . These mechanically driven
changes in RhoA–ROCK activity have been implicated in the osteogenic commitment of MSCs as
they increase the activity of two early-stage osteogenic markers, osterix and RUNX2 (REF. ).
Reinforcing the role of RhoA in MSC osteogenesis, our group recently showed that regulation of
RhoA activity through leukaemia-associated Rho guanine nucleotide exchange factor (LARG; also
known as ARHGEF12) and Rho GTPase-activating protein 18 (ARHGAP18) regulates osteogenic
commitment in MSCs .

Signalling molecules.

In parallel to cytoskeletal restructuring, mechanical signals also activate a number of signalling
molecules, including MAP kinases (such as ERK and JNK) and the WNT effector β-catenin. Perhaps
the most studied signalling protein in bone, β-catenin counteracts an adipogenic stimulus when
activated, which inhibits adipogenesis of bone-marrow-derived MSCs as demonstrated by reduced
levels of lipids and decreased expression of PPARγ and adiponectin . Following a mechani-
cal challenge, FAK operates in conjunction with the SRC kinase FYN to activate mTORC2, which
then initiates the signal cascade of increased levels of AKT leading to decreased levels of GSK3β,
thereby increasing levels of β-catenin . In this way, the increase in the number of focal adhe-
sions after application of an acute mechanical challenge ampli�ies the downstream response to
force, as demonstrated by a greater induction of β-catenin with a subsequent application of
force . Thus, a transient adaptation of the cell increases its sensitivity to follow-on mechanical
signals, yet the absence of mechanical signals could systematically dismantle these ‘antennae’ and
leave the system unresponsive to input . Translating this �inding to the clinic, strategic delivery of
physical interventions during rehabilitation might have the potential to ratchet up the mechanical
sensitivity and response of cell populations; however, leaving a system unstimulated for long peri-
ods of time (for example, as in long-term bed rest) might undermine the adaptive machinery’s ca-
pacity to protect the patient.

The nucleus.

Emerging evidence suggests that the nuclear envelope houses a number of mechanoregulatory
proteins and has an active role in both cytoskeletal dynamics and nuclear access to molecular
transducers of mechanical information. Mechanically, the cytoskeleton couples to the nucleus
through the linker of nucleoskeleton and cytoskeleton (LINC) complex protein . F-actin binds to
a nesprin protein (nesprin 1 or nesprin 2), which are spectrin repeat proteins that pierce the nu-
clear envelope, connecting via its KASH (Klarsicht, ANC1, SYNE homology) domain to intramem-
brane lea�let SUN proteins (SUN1 and SUN2) . As LINC elements, SUN1 and SUN2 partly regu-
late nuclear mechanical integrity . Mechanically, the nuclear envelope transmembrane protein
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emerin is known to accelerate actin polymerization , shifting between inner and outer nuclear
membranes. By contrast, external mechanical challenges to epidermal stem cells cause emerin en-
richment at the opposing nuclear envelope, and emerin accumulation is accompanied by the re-
cruitment of non-muscle myosin IIA to promote local actin polymerization that reduces nuclear
actin levels and promotes perinuclear actin accumulation . This �inding is consistent with our
recent �indings that nuclear actin levels and its polymerizing state are powerful determinants of
MSC differentiation into osteogenic and adipogenic lineages .

Another protein that is active in the outer nuclear envelope, FH1/FH2 domain-containing protein
1 (FHOD1), binds to the spectrin repeat domain of nesprin 2G to increase the coupling strength
between LINC and F-actin . Supporting the regulatory role of the LINC complex in cytoskeletal
dynamics, depletion of nesprin 1 (REF. ) or SUN1 (REF. ) alters focal adhesion kinetics by in-
creasing focal adhesion strength, whereas deletion of SUN2 results in the opposite effect, decreas-
ing focal adhesions . Co-depletion of LINC elements SUN1 and SUN2, as well as disconnecting
LINC through overexpressing the nesprin–SUN binding domain KASH, accelerates MSC osteoblas-
togenesis and impedes cell mechanosensitivity to subtle mechanical signals, such as low-intensity
vibration . Although this �inding suggests that LINC has a role in regulating mechanosensitivity,
both LINC-depleted MSCs and cells without nuclei remain responsive to high-magnitude substrate
strain and activate FAK at Tyr397 in response to strain. This observation suggests that LINC has a
nuanced function in cell mechanosensitivity. Moreover, the LINC complex serves an important role
in the nuclear access of important mechanotransducers, such as β-catenin and YAP1 (REFS ).

Depleting nesprin 1 inhibits strain-induced nuclear entry of transcriptional co-activator YAP1.
Findings published in 2017 indicate that the access of transcriptional co-activator YAP1 to the nu-
cleus is regulated through stretching of nuclear pores during cytoskeletal tension, which facilitates
the transfer of transcriptional co-activator YAP1 to the nucleus . Our group has also demon-
strated that LINC has an important role in β-catenin access to the nucleus. β-Catenin does not
have a classic nuclear localization signal but, instead, enters through the nuclear lea�lets via direct
contact with the nuclear pore complex (NPC) . β-Catenin transiently localizes to the LINC ele-
ment nesprin, which might provide a ‘launching pad’ for subsequent nuclear entry . Untethering
of nesprin 2 from the nuclear envelope via co-depletion of both SUN1 and SUN2 proteins dis-
places β-catenin and decreases its levels in the nucleus . Thus, β-catenin generated through ex-
ercise appears to be a critical event in transmitting these signals into the nuclear-mediated tran-
scription of osteogenic genes.

Lamin A/C is a well-known intranuclear, mechanoadaptive intermediate �ilament system housed
inside the nucleus. Nuclear levels of lamin A/C positively correlate with resident tissue stiffness in
a linear manner , and lamin A/C plays a major role in regulating nuclear stiffness .
Multipotent MSCs, which enter musculoskeletal cell lineages that have mechanically demanding
functions, have a more robust lamin A/C network and increased LINC connectivity than multipo-
tent embryonic stem cells . As embryonic stem cells differentiate into somatic cell lineages, levels
of LINC and lamin A/C increase . In bone, levels of lamin A/C increase when MSCs enter the os-
teogenic lineage , a change that contributes to the increased cellular stiffness of
osteoblasts . Furthermore, lamin A/C overexpression promotes osteogenic
differentiation . By contrast, levels of lamin A/C decrease when MSCs undergo adipogenesis ,
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and both partial and complete deletion of lamin A/C promote an adipogenic programme in
MSCs . In this way, stiffness of resident tissues, such as the hard tissues of the skeleton, ex-
erts control on the cell itself, both at the material level (higher effective modulus or stiffer bone)
and through regulating nuclear stiffness (stiffer cell) to bias MSC differentiation towards osteoge-
nesis and against adipogenesis.

Bone cells.

Resident bone cells exhibit distinct responses to mechanical loading, including increased β-catenin
signalling (for example, osteoblasts  and osteocytes have dendritic processes that are embed-
ded throughout the bone matrix that function as a mechanosensor array) . Oestrogen has a dis-
tinct role in regulating bone homeostasis as osteoblast apoptosis is prevented  by the phospho-
rylation of oestrogen receptor-α (ERα) and upregulation of MAPK expression , the latter per-
haps similar in nature to activation of MAPK by mechanical strain . In states of oestrogen deple-
tion in mice, achieved via ovariectomy, osteoclast activity is heavily upregulated, yet incorporation
of mechanical strain via low-intensity vibration still enhances bone formation during fracture cal-
lous healing through increased expression of ERα . In vitro, mechanical strain of pre-os-
teoblasts increases the matrix mineralization of osteocalcin and osteopontin, which, when extrap-
olated to exercise challenges at the level of the organism, should improve bone strength . When
stimulated by �luid shear stress, β-catenin signalling increases in osteocytes and osteoblasts .
Finally, bringing us back to how these bone cells might recognize and best respond to mechanical
signals through their dynamic cytoskeletal apparatus, we have shown that inclusion of a 3 h re-
fractory period between successive bouts of mechanical challenges, in this case by low-intensity
vibration, improves the ability of these mechanical signals to suppress adipogenesis . To a de-
gree, this effect is achieved, as discussed in a previous section, because the second bout of me-
chanical force is given after an increase in focal adhesion number and connectivity through a
RhoA-based signalling cascade, taking advantage of an adapted cell better suited to perceive the
mechanical challenges . Separating the refractory period even further to 5 h between mechanical
bouts, which were delivered in vivo, also increased the MSC population .

Collectively, these �indings indicate that MSCs residing throughout the bone marrow utilize both
cytoskeleton remodelling and biochemical transducers to facilitate information �low between two
critical mechanosensory centres (focal adhesions and the nuclear envelope) in response to me-
chanical challenges. In addition, in vivo exposure to multiple mechanical events that are separated
by suf�icient time for the system to adapt results in the promotion of osteogenic and anti-adi-
pogenic outcomes . In deciphering how exercise regulates MSC fate, consideration should be
given as to how the marrow mechanical environment and MSCs residing within bone evolve with
age and disease state, as well as treatment of diseases, and adapt to loading demands during exer-
cise. For instance, in the setting of cancer, certain treatments, such as radiation  and hormone
deprivation , signi�icantly increase bone marrow adiposity. The implications of marrow fat
for musculoskeletal health are unclear in humans but will be important areas of study.
Understanding the role of mechanical signals in improving musculoskeletal function will be impor-
tant, as elderly individuals and individuals who are in�irm, injured or obese are often unlikely to
adhere to an exercise prescription no matter how bene�icial it might be.
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Low-intensity vibration

Mechanical effects of exercise.

Exercise is often presumed to suppress adiposity through metabolic pathways, such as increasing
caloric expenditure , and it is assumed that the longer and more strenuous the activity the more
effective it becomes. Indeed, our group showed that exercise (both treadmill and wheel running)
in mice (aged 4–8 weeks) , even under conditions conducive to adipogenesis, such as a HFD
or treatment with thiazolidinedione, suppressed adiposity. The salutary effect of exercise on the
skeleton, however, is generally believed to be energy-independent and is instead regulated by os-
teoblast or osteocyte signalling, or concerted effort from both cells , generated by load-induced
bone strain , enhanced �luid �low , intramedullary pressure  and/or streaming potentials .
Furthermore, once a threshold of loading is surpassed, no additional in�luence is realized .
These mechanical parameters correlate more strongly to the dynamics (time-varying) of the load
environment (that is, impact , strain rate , strain gradients  and cycle number ) than to
load magnitude, a conclusion strengthened when considering that static challenges (that is, up-
right stance and balance) fail to serve as anabolic stimuli . Departing from a ‘more is better’
strategy, several groups have reported that extremely small mechanical signals, induced at high
frequency using low-intensity vibration, are anabolic to bone  and suppress the for-
mation of adipose tissue .

Frequency and magnitude of signals.

High-frequency, low-magnitude mechanical signals persist in the functional load regime ; low-
magnitude mechanical signals are generated by the dynamics of muscle contraction . The per-
sistence of such signals is evident when considering that the daily history of bone strain consists
of a few large mechanical events (for example, four loading events per day that are >2,000 με)
as well as hundreds of thousands of daily events that are well below 10 με (REF. ). That low-
magnitude mechanical signals, induced using low-intensity vibrations in the absence of weight
bearing, can promote bone formation  led to the unexpected �inding that low-intensity vibra-
tions also inhibit adipogenesis and systemic adiposity in adult mice  while decreasing lev-
els of triglycerides, free fatty acids and liver steatosis . These �indings suggest that adipose de-
velopment might also have an energyindependent element; the reciprocal relationship of fat to
bone  points to a novel target to control the bone versus fat phenotype — their shared MSC
progenitor . Furthermore, low-intensity vibrations alter the haematopoietic response
of obese mice fed an HFD by restoring depleted B cell populations in gonadal fat pads, a mecha-
nism suggested to have arisen through fate selection of HSCs towards B cell lymphopoiesis at the
expense of osteoclastogenesis . Therefore, by targeting both bone marrow MSCs and HSC im-
mune progenitors of the marrow, low-intensity vibrations could mitigate the pernicious conse-
quences of obesity on the immune system while suppressing adiposity. As age increases, however,
the challenge of using low-intensity vibrations in adults to treat obesity (or osteoporosis) is that
the sensitivity to mechanical stimulation might have already declined .

Cycles of signals and rest.
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Growing evidence suggests that the incorporation of multiple cycles of mechanical signals within a
given day, separated by periods of rest, can increase their effects in reducing adipogenesis and in-
creasing osteogenesis. Low-intensity vibrations have the greatest impact in young participants
(aged 5–20 years) , an in�luence that reduces over time in ageing adults (65–85 years). Young
mice (aged 5 weeks) receiving HFD chow are receptive to singular bouts of low-intensity vibra-
tions over 12 weeks, which results in increased glucose and insulin metabolism . However, aged
HFD-fed mice (17 weeks old) bene�it more in terms of offsetting adiposity and impaired glucose
metabolism (hyperinsulinaemia) as a result of two 15 min bouts of low-intensity vibrations than
from a singular 30min bout .

Rest periods, ranging anywhere from 14 s to 8 h, introduced between mechanical inputs increase
the anabolic response of bone . Incorporating refractory periods into the low-intensity vibra-
tion loading scheme increases the expression of insulin receptor substrate 1 (IRS1), which is a
negative regulator of the PI3K pathway , in the perigonadal fat pads in HFD-fed mice, eliciting an
even stronger effect than that seen in aged mice on control diets exposed to a single bout of low-
intensity vibration treatment. In the clinical setting, exercise regimens to treat patients with obe-
sity might elicit the anti-diabetic effects of mechanical loading, but the effects will probably be de-
pendent on the age of the patient — the younger the patient is, the more responsive they will be.
Altogether, targeting the immunosuppressive and anti-in�lammatory capacity of bone marrow
stem cells by inducing proliferation and lineage selection using exercise or exercise surrogates
might collectively help address adipose tissue dysfunction.

Effects of low-intensity vibrations.

In humans, low-intensity vibrations promote increased bone mass and quality, both of which con-
tribute to bone strength and resistance to fracture, in children with disabling conditions, including
cerebral palsy , Duchenne muscular dystrophy  and adolescent girls with idiopathic scol-
iosis . Low-intensity vibrations are anabolic to bone and muscle in young women (15–20 years
old) with osteoporosis  and augment bone accretion in survivors of childhood cancer  and
patients with Crohn’s disease . Acute studies (within 5 days) show that normal bone turnover
can be restored in young women (aged 16.3 ± 1.9 years) combating anorexia nervosa  and that
markers for bone resorption are suppressed in healthy young women within 3 months . In each
of these studies, however, it is important to note that the salutary in�luence correlates with adher-
ence; mechanical signals are effective only if you use them.

The design of the low-intensity vibration platform uses closed-loop acceleration feedback to en-
sure a high-�idelity signal , a design that can safely  deliver these barely perceptible me-
chanical signals to participants, including frail elderly individuals  and those with spinal cord
injuries . Low-intensity vibrations are considered a nonsigni�icant risk by the FDA , with an
intensity considered safe for up to 4 h of exposure per day . Other instruments providing me-
chanical stimulation operate in higher-magnitude and lower-frequency domains, making them less
practical and even risky for use in patients whose skeletons are frail (such as those with post-
menopausal osteoporosis or osteogenesis imperfecta) . Although low-intensity vibrations can-
not be considered a substitute for exercise, these studies indicate that they represent salutary me-
chanical signals to improve clinical end points in participants with limited exercise capacity  and
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might be a means of priming responsiveness to exercise. Increasing sensitivity to, and thus ef�icacy
of, exercise might ultimately make it more accessible to older adults (age ≥60 years) and in�irm
patients unable to exercise adequately to stimulate these integrated regulatory systems.

Conclusion

Living systems are affected by mechanical signals at the organ and tissue level (bone, muscle and
fat) as well as at the level of the cell (MSCs, osteoblasts, myocytes and adipocytes). Gravity has
been an inescapable physical signal across all life systems since the beginning of time, whereas
other physical factors, such as light, temperature, geography, substrate, external threats or food
availability, vary with time, both acutely and over aeons. Biological systems have been challenged
to resist gravity, and by evolving to become mechanosensitive, their ability to survive
improved . Conversely, sedentary lifestyles, combined with ageing, have led to a degraded
musculoskeletal system and increased adiposity. Mounting evidence indicates that these systemic
stressors disrupt both MSC and HSC populations, in addition to biasing the fate selection of their
progeny , contributing to a compromised regenerative (MSC) and immune (HSC) system.
Empirical evidence suggests that mechanical signals can be used to prevent and/or treat osteo-
porosis and obesity, guiding mesenchymal and satellite stem cell lineage selection towards an im-
proved musculoskeletal system and suppressed adipose burden, salutary end points that mirror
those of exercise and are enabled by an intact cytoskeletal and nuclear connectivity.

Key points

Ageing and inactivity each contribute towards a local and systemic environment
conducive to poor bone quality, increased systemic adiposity, marrow adipogenesis and
in�lammation.
Mesenchymal stem cells and their lineage-differentiated progeny (for example,
osteoblasts) are mechanosensitive, such that increased mechanical signals (such as
exercise) stimulate muscle and bone anabolism.
Mechanical signals suppress obesity end points, including fat gain, adipocyte lipid
acquisition, chronic in�lammation and indices associated with type 2 diabetes mellitus.
Transduction of mechanical signals across the plasma membrane of stem cells into the
nucleus activates signalling cascades and cytoskeletal adaptations to initiate osteogenic,
chondrogenic and myogenic differentiation and inhibit adipocyte differentiation.
Mechanical signals, such as those induced through low-intensity vibration, need not be
large in magnitude, or long in duration, to in�luence bone or fat phenotypes.

Loading
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In terms of mechanical loading, a singular or compound series of static or dynamic (time-
varying) forces applied to a system via gravity or direct application from an external body,
causing tension, shear or compression.

Unloading

A cell or body is considered mechanically unloaded if no static or dynamic strain is
present, such as what might occur with bed rest or space�light (that is, microgravity).

Ground-reaction forces

As applicable to biomechanics, ground-reaction forces consist of the normal forces ex-
erted by the ground on the body making contact with it, particularly resulting from a heel
strike during walking or running.

Spectral content

Muscle contractive forces, speci�ically on bone, resonate within a discrete frequency
range.

Load sensation

Mechanical loads are ‘sensed’ by cells through transduction of external or internal forces
across cytoskeletal proteins into the nucleus.

Tissue senility

The ageing process is associated with the quiescence of regenerative cell populations re-
siding in tissues throughout the body.
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Muscle-specific force

Quanti�ication of the contractile forces generated by muscles can be normalized to muscle
size ex vivo.

Fluid shear

Fluidic forces applied tangentially across cell membranes or tissues.

Dynamic shear forces

Physiological �luids exert a gradient of pulsatile �low across vessel walls, mineralized bone
and cells housed in the bone marrow microenvironment.

Tissue stiffness

In terms of bone, the stiffness of the tissue is correlated to its ability to resist deformation.

Nuclear stiffness

Nuclear stiffness refers to its rigidity and is directly related to polymeric structural pro-
teins (that is, microtubules, intermediate �ilaments and micro�ilaments) found across the
cytoskeleton, of which actin proteins provide substantial reinforcement.
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